Fact Sheet – Goodness-of-Fit (12.1)

A goodness-of-fit test is an inferential procedure used to determine whether a frequency distribution follows a specific (probability) distribution.

Example: A 6-sided die is fair, i.e. $p_1 = p_2 = ... = p_6 = \frac{1}{6}$.

Example: The distribution of plain M&M candies in a bag is 13% brown, 14% yellow, 13% red, 20% orange, 24% blue, and 16% green.

Conditions

To perform a Goodness-of-Fit test for k categories, the following two conditions must be met.

- Each expected frequency must be at least 1: $E_i \ge 1$ for all i = 1 to k.
- No more than 20% of all expected frequencies are less than 5.

You can check the conditions by computing the expected frequencies once you have set up the null hypothesis H₀. The expected frequency for each category can be computed by multiplying the sample size (*n*) by the claimed proportion (p_i) for that category: $E_i = n \cdot p_i$

Hypothesis Test

Step 1

The null hypothesis will be of the form $p_1 = \#, p_2 = \#, \dots, p_k = \#$. H₁ will always be "At least one proportion is different than claimed."

Step 3

The test statistic is $\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$, where O_i is the observed sample frequency for category *i* and E_i

is the computed expected frequency for category *i*. Just write "Goodness-of-Fit", rather than writing the test statistic.

Step 4

To compute the test statistic and P-value using StatCrunch ...

1. Enter the observed counts in the first column.

Enter the expected counts in the second column.

Name the columns observed and expected.

2. Select Stat, highlight Goodness-of-fit, then highlight Chi-Square test.

3. Select the column that contains the observed counts and select the column that contains the expected counts. Click Calculate.