Pointers – Section 6.1

A **random variable** is a numerical measure of the outcome of a probability. It can either be **discrete** or **continuous**.

A discrete random variable has a finite or countable number of values. These values are typically only whole numbers that result from counting a number of successes.

A continuous random variable has infinitely many values. These values can take on decimal values and usually result from some sort of physical measurement.

A **discrete probability distribution** is like a probability model, except the possible outcomes will always be whole numbers instead of categories like male & female. The total of all the probabilities has to equal $1\left(\sum P(x)=1\right)$, and each probability must be between 0 and $1\left(0 \le P(x) \le 1\right)$.

We see use a discuss a makehilik, distribution to find the probability of contain quanta
we can use a discrete probability distribution to find the probability of certain events.

Probability	Process
P(x=4)	Look up the probability next to $x = 4$.
P(x < 4)	Add up the probabilities for every value of x that is less than 4.
$P(x \le 4)$	Add up the probabilities for every value of x that is 4 or lower.
P(x > 4)	Add up the probabilities for every value of x that is greater than 4.
$P(x \ge 4)$	Add up the probabilities for every value of x that is 4 or above.
$P(2 \le x \le 6)$	Add up the probability for every value of x from 2 through 6.

Mean & Standard Deviation

The **mean of a random variable** is what we would expect to happen in the long run, it is also called the **Expected Value** *E(X)*. If we repeated an experiment over and over the mean would be the average outcome. We can also calculate the **standard deviation of a random variable**.

To compute the mean, multiply each value of *x* by its probability and total all of these products.

$$\mu_x = \sum \left[x \cdot P(x) \right]$$

To compute the standard deviation, use the following formula.

$$\sigma_{x} = \sqrt{\sum \left[\left(x - \mu_{x} \right)^{2} \cdot P(x) \right]}$$

1. Subtract the mean from each value *x*.

2. Square each difference.

3. Multiply by x's probability.

4. Total.

5. Take the square root.

Example

Mean

x
$$P(x)$$
 $x \cdot P(x)$ 00.2010.30.320.250.530.150.4540.10.4 $\mu_x = 1.65$

Standard Deviation

x	P(x)	$\mu_{_X}$	$x-\mu_x$	$(x-\mu_x)^2$	$(x-\mu_x)^2\cdot P(x)$		
0	0.2	1.65	-1.65	$(-1.65)^2$	$(-1.65)^2 \cdot 0.2$		
1	0.3	1.65	-0.65	$(-0.65)^2$	$(-0.65)^2 \cdot 0.3$		
2	0.25	1.65	0.35	0.35 ²	$0.35^{2} \cdot 0.25$		
3	0.15	1.65	1.35	1.35 ²	$1.35^2 \cdot 0.15$		
4	0.1	1.65	2.35	2.35^{2}	$2.35^{2} \cdot 0.10$		
					Total = 1.5275		
$\sigma_x = \sqrt{1.5275} = 1.24$							