Pointers - Section 6.1

A random variable is a numerical measure of the outcome of a probability. It can either be discrete or continuous.

A discrete random variable has a finite or countable number of values. These values are typically only whole numbers that result from counting a number of successes.

A continuous random variable has infinitely many values. These values can take on decimal values and usually result from some sort of physical measurement.

A discrete probability distribution is like a probability model, except the possible outcomes will always be whole numbers instead of categories like male \& female. The total of all the probabilities has to equal $1\left(\sum P(x)=1\right)$, and each probability must be between 0 and $1(0 \leq P(x) \leq 1)$.

We can use a discrete probability distribution to find the probability of certain events.

Probability	Process
$P(x=4)$	Look up the probability next to $x=4$.
$P(x<4)$	Add up the probabilities for every value of x that is less than 4.
$P(x \leq 4)$	Add up the probabilities for every value of x that is 4 or lower.
$P(x>4)$	Add up the probabilities for every value of x that is greater than 4.
$P(x \geq 4)$	Add up the probabilities for every value of x that is 4 or above.
$P(2 \leq x \leq 6)$	Add up the probability for every value of x from 2 through 6.

Mean \& Standard Deviation

The mean of a random variable is what we would expect to happen in the long run, it is also called the Expected Value $E(X)$. If we repeated an experiment over and over the mean would be the average outcome. We can also calculate the standard deviation of a random variable.

To compute the mean, multiply each value of x by its probability and total all of these products.

$$
\mu_{x}=\sum[x \cdot P(x)]
$$

To compute the standard deviation, use the following formula.

$$
\sigma_{X}=\sqrt{\sum\left[\left(x-\mu_{X}\right)^{2} \cdot P(x)\right]}
$$

1. Subtract the mean from each value x.
2. Square each difference.
3. Multiply by x's probability.
4. Total.
5. Take the square root.

Example

Mean

x	$P(x)$	$x \cdot P(x)$
0	0.2	0
1	0.3	0.3
2	0.25	0.5
3	0.15	0.45
4	0.1	0.4
	$\mu_{x}=1.65$	

Standard Deviation

x	$P(x)$	μ_{X}	$x-\mu_{X}$	$\left(x-\mu_{X}\right)^{2}$	$\left(x-\mu_{X}\right)^{2} \cdot P(x)$
0	0.2	1.65	-1.65	$(-1.65)^{2}$	$(-1.65)^{2} \cdot 0.2$
1	0.3	1.65	-0.65	$(-0.65)^{2}$	$(-0.65)^{2} \cdot 0.3$
2	0.25	1.65	0.35	0.35^{2}	$0.35^{2} \cdot 0.25$
3	0.15	1.65	1.35	$1.35{ }^{2}$	$1.35{ }^{2} \cdot 0.15$
4	0.1	1.65	2.35	$2.35{ }^{2}$	$2.35^{2} \cdot 0.10$
					Total $=1.5275$

$$
\sigma_{x}=\sqrt{1.5275}=1.24
$$

